public class RecurrentBrain extends Brain
Constructor and Description |
---|
RecurrentBrain(NetFunction functg,
LinkedList<Integer> layerSizes,
int feedbackLinks) |
RecurrentBrain(NetFunction functg,
LinkedList<Integer> layerSizes,
String inputMappingStyle,
int feedbackLinks) |
Modifier and Type | Method and Description |
---|---|
void |
backPropogate(double alpha,
Map<String,Double> targets)
Do back propogation on a group of output targets at once.
|
void |
backPropogate(String name,
double alpha,
double target)
Do back propogation learning with the given alpha and target.
|
void |
resetFeeds(double val) |
void |
saveFeeds()
Optional.
|
void |
updateFeeds()
Copies all output feedback values to the inputs
Should be run before a new set of inputs are set.
|
addInput, addInputGroup, addOutput, getAllOutputs, getInputNode, getInternalLinkCount, getOutput, incSerial, removeOutput, setAllInput, setHiddenLayers, setInput, toString
public RecurrentBrain(NetFunction functg, LinkedList<Integer> layerSizes, int feedbackLinks)
public RecurrentBrain(NetFunction functg, LinkedList<Integer> layerSizes, String inputMappingStyle, int feedbackLinks)
public void resetFeeds(double val)
public void saveFeeds()
public void updateFeeds()
public void backPropogate(double alpha, Map<String,Double> targets)
Brain
backPropogate
in class Brain
alpha
- - learning factor. Should be positive and less than one. 0.01 is a good starting point.targets
- a map of string(output names) to doubles (target output values) to learn onpublic void backPropogate(String name, double alpha, double target)
Brain
backPropogate
in class Brain
name
- - Output name to learnalpha
- - The learning factor. Should be positive and less than one. 0.01 is a good starting point.target
- - What the output value should be for the set inputs